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Adaptive control of spatially extended systems: Targeting spatiotemporal patterns and chaos
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We describe adaptive control algorithms whereby a spatially extended nonlinear system can be steered to a
target state with desired spatiotemporal characteristics. Specifically we implement our control on a two-
dimensional coupled map lattice, and successfully direct the system to desired targets ranging from spatiotem-
poral fixed points and regular spatial patterns to spatiotemporal chaos. The proposed methodology entails
monitoring the local neighborhood of only offerbitrary site in order to regulate the entire lattice. Further,
knowledge of the system’s governing equations is not required. We also demonstrate the success of this
method in controlling an unstable elastic array, a system of interest in engineering applications.
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The phenomenon of pattern formation can be observed iwhereX=(X,X,,...Xy) are the state variables apdis the
a variety of experimental situations such as lasers and chemparameter whose value determines the nature of the dynam-
cal reactiond1]. Distributed control techniques capable of ics, by an additional equation for the evolution of the param-
stabilizing complex patterns may shed some light on thester itself
mode of pattern formation in natural systefizd and may
also have many important practical applications in diverse pn=€e(P*—P), 2
contexts such as microelectromechanical systems, environ-
mental monitors, drag reduction in fluid flows, compact datawhere?P* is the target value of some variable or propery
storage and improved material properfig$ In all the above ande is the stiffness of control. Since the present implemen-
examples one requires a control mechanism that targets tation targets a desired spatiotemporal state the profeisy
regular spatiotemporal regime. On the other hand, the ershosen to reflect the spatiotemporal characteristics of the de-
hancement of spatiotemporal chaos has important practicaired state. The feedback can be spatial or temporal depend-
applications in contexts as diverse as mixing flows, elecing on the nature of the target, a spatial feedback being ef-
tronic systems, and chemical reactions, where the enhanctective for a spatial pattertiike squares and either a spatial
ment of chaos leads to improved performafgk or in bio-  or temporal feedback proving to be effective for control to
logical applications such as neural systd®m$)|. It is thus of  spatiotemporally periodic behavior. In addition, we choose a
considerable interest, and potential utility, devise control property P that can be simply defined, without the explicit
algorithms capable of achieving the desired type of spaknowledge of the system’s equations of motion, and try to
tiotemporal behavioin such complex systenig]. achieve control without monitoring a large number of sites.

Here we describe simple and easily implementaiolap- The above two features can be of considerable utility in the
tive controlalgorithms targeting desired complex spatiotem-implementation of this control algorithm in an experimental
poral behavior. We explicitly show their success in targetingsituation.
spatiotemporal fixed points, spatial patterns such as checker- We first demonstrate the success of our control algorithm
boards and stripes, as well as in directing systems to erin a two-dimensional lattice of coupled logistic maps, a sys-
hanced spatiotemporal chajpg6]. Further, we demonstrate tem capable of exhibiting a rich variety of spatiotemporal
the success of such algorithms on an unstable elastic arrgatterns as well as spatiotemporal chd®& The lattice
studied in the context of “smart matterf3]. evolves according to the equations:

Adaptive control algorithms have hitherto been imple-

mented primarily on nonlinear systems with few degrees of . . € o
freedom both for targeting periodic behaviat,8] and for Xn+1(1,))= (1= e)f(a,xy(i,j))+ 7 > {9lxa(i.0)]
enhancing chads$]. The method applies a feedback loop in NN

order to drive the system parame{@r parametepsto the =9 X%n(innsinm 1}, (3)

values required so as to achieve a desired or target state. This
is implemented by augmenting the evolution equation for thevherex,(i,j) is the value of the variable defined at the site
dynamical system, (i,j) at time stepn, and NN denotes the four nearest neigh-
) bors of site(i,j). The local map is defined to bEx)=1
X=F(X;u;t), (1)  —ax? with « indicating the strength of the nonlinearity, and
parametek gives the strength of coupling among neighbors.
Either parametew or € can be controlledi10]. Note that the
*Electronic address: sudeshna@imsc.ernet.in method is quite general and can be directly applied to ex-
TElectronic address: gupte@chaos.iitm.ernet.in tended systems with continuous time evolution as well.
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The simplest spatiotemporal state one may wish to target IS L I B I
is a synchronized frozen lattice, that is the spatiotemporal - ; .
fixed point state. Targeting such fixed points could be desir- :
able in a variety of situations ranging from the maintenance
of steady states in biophysical processes under fluctuating
environmental conditiond,11] to “smart matter” applica-
tions[3].

To reach and maintain a specific stable spatiotemporal
fixed pointx* so thatP=x, P*=x*, the control equation
(for the control parametes) is

displacement U}

ani1=an— Y[ Xn(ic,jo) —X*] (4)

where (.,j.) is thesingle site chosen for monitoring feed-
back and the parameter is changed globally. If the desired
state is any arbitrary synchronized fixed point, rather than a L o L L Lo
specific fixed poink* as above, one can employ an alternate 0 20 40 6 80 100
control strategy. The control parameternow evolves via time (t)

the equation

FIG. 1. Displacement of a representative element in an elastic
array with respect to timein the uncontrolled....) and controlled
apn=1=an—Y¢, ) case(—) [i.e., Egs.(6) and(7) in the text, respectively The num-
ber of elementd in the chain is 100. The chain is evolved via the
where the error signaf involves either spatial or temporal fourth order Runge Kutta algorithm, with step sige=0.01. Here
feedback. The error can be temporally defined &s: we are controlling to a spatiotemporal fixed point by using spatial
=[Xn(ic,ic)—Xn_1(ic,jc)|. The demand that this error must feedbackwith stiffnessy=10005t= 10). In the absence of control
be zero drives the lattice to the first spatiotemporal fixedthe system moves exponentially away from the steady state, while
point state(where £=0) it encounters in parameter space. under control it manages to maintain the steady state.
The same effect can be achieved using a spatial feedback, ) )
demanding that the local patch around the monitored sit/here the controlled matrik =A—C, whereC is the con-
must be synchronized, i.e., the error signal is defined as trolling part given by a diagonal matrixcl and | is the
== Xn(icoie) = Xn(inn i) |- identity matrix[13]. The error signak, as described above,
We now demonstrate the utility of our scheme in an in-c@n be either spatial or temporal, and is computed using in-
teresting application involving continuous time evolution, formation from only one arbitrary sitel4]. Figure 1 shows
viz. controlling an unstable elastic array, which has beerfhe displacements of a representative element of such an ar-
used as a prototypical model for “smart matter.” It is clear '@y in the controlled and _uncontrolled case. In_ the ab_sence of
that in such a context, where the system contains many el&ontrol, very weak environmental perturbations drive the
ments, the effectiveness of control algorithms which rely onSyStém exponentially away from the desired configuration, as
access to the full state of the system and detailed knowledgvident from the figure. Our control manages to achieve the
of its behavior is limited3]. Hence the present approach can90@l, typical in smart matter applications, of maintaining the
prove useful, as it needs local information from very few Stéady state where the beam is frozen in time.
sites and no detailed knowledge of the dynamics in order to 1he above method can also be used to target complex
achieve the necessary contfaPp]. spatial patterns. To target spatial patterns we must use spatial
Consider a model of the buckling instability of beafgg  feedback, which is obtained by measuring tbeal neigh-
an elastic array oN elements coupled to nearest neighborsPorhood of the monitored sitdhe feedback has to be spe-
by springs with spring constantg and a destabilizing force cifically tailored according to the distinguishing characteris-

coefficientf. The dynamics of the beam is given by tics of the desired targeted pattern. We demonstrate this for
the case of two distinct patterns in the coupled map lattice

d2u (CML): the checkerboar@squaresand stripes.
W:AU_GU‘ (6) In order to target checkerboard patterns, one can use its

simplest characteristic, which is the requirement tk(@t]j)
: : : : =x(i+1j-1)=0, x(i,j)=x(i=1j+1)=0,  x(i.j)
where thel\l-dlmensmnallvectou gives the d|splacemer_1ts of —x(i+1,j+1)=0 andx(i,j)—x(i—1,j—1)=0, for all i,.
the glemgnts, thg damping matﬂ)ghas the.fomgl, | being Utilizing the above to construct an error signal we have for
the identity matrix and the coupling matri has elements checkerboard:  £=|{X(i¢,jc) —X(ic+1jc.—1)}
Amn -2t T form=n, Anp=afor m=n=L andAmn 4 {x(i,jo) = x(ic= e+ 1)} + {X(ic jo) ~X(ic+ Ljc+ 1))
=0 otherwise. _ _ A+ {X(ic.jo) —X(ic—1jc—1)} where (..jo) is the site
Our control principle can be implemented via an effectivemonitored for feedback. Hence the equation for controlling
dynamics given by parametew is a,, ;= a,— y€ and for controlling parameter
5 €is[15] €, 1= €,+ YE.
d_U —Mu-Gi @ Now if one wanted to target a striped pattern the demand
dt? ’ is x(i,j)—x(i+1j—1)=0 and x(i,j)—x(i—1,j+1)=0.
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the system, while being perfectly periodic in space, evolves
as noisy cycles in time.

The adaptive method can also be used towards enhancing
spatiotemporal chaos, an application of practical importance
[4,6]. Now, if the desired state is chaotic rather than periodic,
one needs to choose an appropriate properivhich reflects
the chaotic nature of the target state. An appropriate adaptive
strategy is to takéP to be the instantaneous local stretching
rate Ax, in space or tim¢6]. The error signal is obtained by
the difference between the current stretching rate and a pre-
scribed target. The control equation for parametehus is
any1= ant Y(AXager— AX) and for parametee it is €,
= €n— ¥Y(AX¢arger— AX). The local stretchingdx in time is
given byAx=[Xy(ic,jc) =Xn-1(ic.ic)|, where {¢,jc) is the
site monitored for feedback.

Instead of a temporal feedback, like the one described
above, one can also use a spatial feedback. For instance, one
can demand that the local patch around the monitored site be
very “rough.” A measure of this local “spatial roughness”
(or local stretch in spagecan be Ax=|Zyn[Xn(ic,jc)
—Xn(innsinn) 1. When the targed X yge= 0, @ spatiotempo-
ral fixed point is achieved, as noted before. W, is
large it leads the system to a more spatiotemporally chaotic
state. The controlled parameter rapidly evolves in time to a
suitable range and then fluctuates within a range of values, so
as to keep the targeted stretch rate, on an average, satisfied.

Note, when targeting chaos by controlling parameter
the control stiffnesg must not be too small. iy is too small
the system moves very slowly through parametespace
and if the initial value ofw is small, the lattice elements tend
to synchronize. Then the spatial error never manages to go to
zero and the control is rendered unstable. For temporal feed-
back, very small stiffness leads the system to temporal chaos,
but spatially again the system synchronizes. Thus one ob-
tains synchronized chaos, which in some cases might be a

i desired target.
In summary, we have presented here several adaptive al-

FIG. 2. Controlling to desired spatial patterns in a CML with gorithms, utilizing both spatial and temporal feedbacks,
g(x)=x and «=2.0, from random initial configurations. The pa- which can be used to achieve desired spatiotemporal behav-
rameter being controlled is whose uncontrolled value is 0.2. Den- ior in extended nonlinear systems. The techniques, which
sity plots of the targeted patterns in the>220 square lattice extend the adaptive control methods for low-dimensional
(I =1,...,20, ] :1,...,20 are displayed:(a) a checkboard pattern Systemi7,8’6] are rapid, powerfu| and robust. We have ap-
(top), controlled by using spatial feedbacks=0.025; (b) a striped  plied the scheme to achieve a wide range of spatiotemporal
pattern (bottom; controlled by using spatial feedback=0.001. 50t from synchronization and spatial patterns to spa-
Note that for achieving striped patterns th.e cqntrol stiffngbas to. tiotemporal chaos, and found the methodology to be very
be small, or else the controlled system will miss the narrow regions . . .
of parameter space supporting the targeted patterns. successfyl in ext_ended sys.tems, both in the case of discrete

and continuous time evolution.
Two significant features of these methods are as follows.
This gives the following error signdto be used in the con- (i) They can be implemented without explicit knowledge
trol equations E=|{x(i¢,jc)—X(ictLjc— 1)} +{X(ic.jc) of the dynamics, which can be treated effectively as a black
—x(ic—1,jc+1)} where {.,jc) is the site monitored for box. The only information necessary to implement adaptive
feedback. control (or adaptive anticontrplis either the difference be-

This control method is found to drive the lattice to the tween the current value of a variable and its previous value
targeted patterns, very effectivelisee Fig. 2 The first  or the value of the monitored sites and a suitable set of
(stable configuration which satisfies the demand of error be-neighbors.
ing O is obtained[16]. Note that the spatial periodicity (i) Very few measurements are required to calculate feed-
achieved by targeting spatial patterns does not necessariback. Thus the scheme is not computationally intensive. In
imply temporal periodicity(since the feedback does not have fact just one(arbitrary site (and its local neighborhogds
any temporal information hereln fact, in the cases above, monitored to obtain the required feedback and this is capable
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of regulating the entire lattice. We have demonstrated theystems, chemical reactions, and Josephson junction arrays.
efficacy of our method in an interesting practical context of ) )
relevance to smart matter where the above-mentioned fea- We would like to thank R. Ramaswamy for many stimu-
tures of our control method could be of considerable advanlating discussions on the subject. N.G. would like to ac-
tage. We hope that our techniques will find further applica-knowledge the support of the Department of Science and
tions in other realistic systems like coupled oscillator Technology(Grant No. SPS/S-2/E-03/26
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