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Adaptive control of spatially extended systems: Targeting spatiotemporal patterns and chaos
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We describe adaptive control algorithms whereby a spatially extended nonlinear system can be steered to a
target state with desired spatiotemporal characteristics. Specifically we implement our control on a two-
dimensional coupled map lattice, and successfully direct the system to desired targets ranging from spatiotem-
poral fixed points and regular spatial patterns to spatiotemporal chaos. The proposed methodology entails
monitoring the local neighborhood of only one~arbitrary! site in order to regulate the entire lattice. Further,
knowledge of the system’s governing equations is not required. We also demonstrate the success of this
method in controlling an unstable elastic array, a system of interest in engineering applications.
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The phenomenon of pattern formation can be observe
a variety of experimental situations such as lasers and ch
cal reactions@1#. Distributed control techniques capable
stabilizing complex patterns may shed some light on
mode of pattern formation in natural systems@2# and may
also have many important practical applications in dive
contexts such as microelectromechanical systems, env
mental monitors, drag reduction in fluid flows, compact d
storage and improved material properties@3#. In all the above
examples one requires a control mechanism that targe
regular spatiotemporal regime. On the other hand, the
hancement of spatiotemporal chaos has important prac
applications in contexts as diverse as mixing flows, el
tronic systems, and chemical reactions, where the enha
ment of chaos leads to improved performance@4#, or in bio-
logical applications such as neural systems@5,6#. It is thus of
considerable interest, and potential utility, todevise control
algorithms capable of achieving the desired type of s
tiotemporal behaviorin such complex systems@2#.

Here we describe simple and easily implementableadap-
tive controlalgorithms targeting desired complex spatiote
poral behavior. We explicitly show their success in target
spatiotemporal fixed points, spatial patterns such as chec
boards and stripes, as well as in directing systems to
hanced spatiotemporal chaos@4,6#. Further, we demonstrat
the success of such algorithms on an unstable elastic a
studied in the context of ‘‘smart matter’’@3#.

Adaptive control algorithms have hitherto been imp
mented primarily on nonlinear systems with few degrees
freedom both for targeting periodic behavior@7,8# and for
enhancing chaos@6#. The method applies a feedback loop
order to drive the system parameter~or parameters! to the
values required so as to achieve a desired or target state.
is implemented by augmenting the evolution equation for
dynamical system,

Ẋ5F~X;m;t !, ~1!
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whereX[(X1 ,X2 ,...XN) are the state variables andm is the
parameter whose value determines the nature of the dyn
ics, by an additional equation for the evolution of the para
eter itself

ṁ5e~P* 2P!, ~2!

whereP* is the target value of some variable or propertyP,
ande is the stiffness of control. Since the present impleme
tation targets a desired spatiotemporal state the propertyP is
chosen to reflect the spatiotemporal characteristics of the
sired state. The feedback can be spatial or temporal dep
ing on the nature of the target, a spatial feedback being
fective for a spatial pattern~like squares!, and either a spatia
or temporal feedback proving to be effective for control
spatiotemporally periodic behavior. In addition, we choos
propertyP that can be simply defined, without the explic
knowledge of the system’s equations of motion, and try
achieve control without monitoring a large number of site
The above two features can be of considerable utility in
implementation of this control algorithm in an experimen
situation.

We first demonstrate the success of our control algorit
in a two-dimensional lattice of coupled logistic maps, a s
tem capable of exhibiting a rich variety of spatiotempo
patterns as well as spatiotemporal chaos@9#. The lattice
evolves according to the equations:

xn11~ i , j !5~12e! f „a,xn~ i , j !…1
e

4
(
NN

$g@xn~ i , j !#

2g@xn~ i nn , j nn!#%, ~3!

wherexn( i , j ) is the value of the variable defined at the s
~i,j! at time stepn, and NN denotes the four nearest neig
bors of site~i,j!. The local map is defined to bef (x)51
2ax2 with a indicating the strength of the nonlinearity, an
parametere gives the strength of coupling among neighbo
Either parametera or e can be controlled@10#. Note that the
method is quite general and can be directly applied to
tended systems with continuous time evolution as well.
R5221 © 1998 The American Physical Society
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The simplest spatiotemporal state one may wish to ta
is a synchronized frozen lattice, that is the spatiotempo
fixed point state. Targeting such fixed points could be de
able in a variety of situations ranging from the maintenan
of steady states in biophysical processes under fluctua
environmental conditions,@11# to ‘‘smart matter’’ applica-
tions @3#.

To reach and maintain a specific stable spatiotemp
fixed point x* so thatP[x, P* [x* , the control equation
~for the control parametera! is

an115an2g@xn~ i c , j c!2x* # ~4!

where (i c , j c) is the single site chosen for monitoring feed
back, and the parameter is changed globally. If the desi
state is any arbitrary synchronized fixed point, rather tha
specific fixed pointx* as above, one can employ an alterna
control strategy. The control parametera now evolves via
the equation

an515an2gE, ~5!

where the error signalE involves either spatial or tempora
feedback. The error can be temporally defined as:E
5uxn( i c , j c)2xn21( i c , j c)u. The demand that this error mu
be zero drives the lattice to the first spatiotemporal fix
point state~whereE50! it encounters in parameter spac
The same effect can be achieved using a spatial feedb
demanding that the local patch around the monitored
must be synchronized, i.e., the error signal is defined aE
5u(NN@xn( i c , j c)2xn( i NN , j NN)#u.

We now demonstrate the utility of our scheme in an
teresting application involving continuous time evolutio
viz. controlling an unstable elastic array, which has be
used as a prototypical model for ‘‘smart matter.’’ It is cle
that in such a context, where the system contains many
ments, the effectiveness of control algorithms which rely
access to the full state of the system and detailed knowle
of its behavior is limited@3#. Hence the present approach c
prove useful, as it needs local information from very fe
sites and no detailed knowledge of the dynamics in orde
achieve the necessary control@12#.

Consider a model of the buckling instability of beams@3#:
an elastic array ofN elements coupled to nearest neighbo
by springs with spring constantsa, and a destabilizing force
coefficientf. The dynamics of the beam is given by

d2u

dt2
5Au2Gu̇, ~6!

where theN-dimensional vectoru gives the displacements o
the elements, the damping matrixG has the formgI, I being
the identity matrix and the coupling matrixA has elements
Amn522a1 f for m5n, Amn5a for m5n61, and Amn
50 otherwise.

Our control principle can be implemented via an effect
dynamics given by

d2u

dt2
5Mu2Gu̇, ~7!
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where the controlled matrixM5A2C, whereC is the con-
trolling part given by a diagonal matrixgEI and I is the
identity matrix @13#. The error signalE, as described above
can be either spatial or temporal, and is computed using
formation from only one arbitrary site@14#. Figure 1 shows
the displacements of a representative element of such a
ray in the controlled and uncontrolled case. In the absenc
control, very weak environmental perturbations drive t
system exponentially away from the desired configuration
evident from the figure. Our control manages to achieve
goal, typical in smart matter applications, of maintaining t
steady state where the beam is frozen in time.

The above method can also be used to target com
spatial patterns. To target spatial patterns we must use sp
feedback, which is obtained by measuring thelocal neigh-
borhood of the monitored site. The feedback has to be spe
cifically tailored according to the distinguishing character
tics of the desired targeted pattern. We demonstrate this
the case of two distinct patterns in the coupled map lat
~CML!: the checkerboard~squares! and stripes.

In order to target checkerboard patterns, one can use
simplest characteristic, which is the requirement thatx( i , j )
2x( i 11,j 21)50, x( i , j )2x( i 21,j 11)50, x( i , j )
2x( i 11,j 11)50 andx( i , j )2x( i 21,j 21)50, for all i,j .
Utilizing the above to construct an error signal we have
the checkerboard: E5 u$x( i c , j c)2x( i c11,j c21)%
1$x( i c , j c)2x( i c21,j c11)%1$x( i c , j c)2x( i c11,j c11)%
1$x( i c , j c)2x( i c21,j c21)%u where (i c , j c) is the site
monitored for feedback. Hence the equation for controlli
parametera is an115an2gE and for controlling paramete
e is @15# en115en1gE.

Now if one wanted to target a striped pattern the dema
is x( i , j )2x( i 11,j 21)50 and x( i , j )2x( i 21,j 11)50.

FIG. 1. Displacementu of a representative element in an elas
array with respect to timet in the uncontrolled~....! and controlled
case~—! @i.e., Eqs.~6! and~7! in the text, respectively#. The num-
ber of elementsN in the chain is 100. The chain is evolved via th
fourth order Runge Kutta algorithm, with step sizedt50.01. Here
we are controlling to a spatiotemporal fixed point by using spa
feedback~with stiffnessg51000dt510!. In the absence of contro
the system moves exponentially away from the steady state, w
under control it manages to maintain the steady state.
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This gives the following error signal~to be used in the con
trol equations!: E5u$x( i c , j c)2x( i c11,j c21)%1$x( i c , j c)
2x( i c21,j c11)%u where (i c , j c) is the site monitored for
feedback.

This control method is found to drive the lattice to th
targeted patterns, very effectively~see Fig. 2!. The first
~stable! configuration which satisfies the demand of error b
ing 0 is obtained@16#. Note that the spatial periodicity
achieved by targeting spatial patterns does not necess
imply temporal periodicity~since the feedback does not ha
any temporal information here!. In fact, in the cases above

FIG. 2. Controlling to desired spatial patterns in a CML wi
g(x)5x and a52.0, from random initial configurations. The pa
rameter being controlled ise, whose uncontrolled value is 0.2. Den
sity plots of the targeted patterns in the 20320 square lattice
( i 51,...,20, j 51,...,20! are displayed:~a! a checkboard pattern
~top!, controlled by using spatial feedback,g50.025; ~b! a striped
pattern~bottom!; controlled by using spatial feedback,g50.001.
Note that for achieving striped patterns the control stiffnessg has to
be small, or else the controlled system will miss the narrow regi
of parameter space supporting the targeted patterns.
-

rily

the system, while being perfectly periodic in space, evol
as noisy cycles in time.

The adaptive method can also be used towards enhan
spatiotemporal chaos, an application of practical importa
@4,6#. Now, if the desired state is chaotic rather than period
one needs to choose an appropriate propertyP which reflects
the chaotic nature of the target state. An appropriate adap
strategy is to takeP to be the instantaneous local stretchi
rateDx, in space or time@6#. The error signal is obtained b
the difference between the current stretching rate and a
scribed target. The control equation for parametera thus is
an115an1g(Dxtarget2Dx) and for parametere it is en11

5en2g(Dxtarget2Dx). The local stretchingDx in time is
given byDx5uxn( i c , j c)2xn21( i c , j c)u, where (i c , j c) is the
site monitored for feedback.

Instead of a temporal feedback, like the one describ
above, one can also use a spatial feedback. For instance
can demand that the local patch around the monitored sit
very ‘‘rough.’’ A measure of this local ‘‘spatial roughness
~or local stretch in space! can be Dx5u(NN@xn( i c , j c)
2xn( i NN , j NN)#u. When the targetDxtarget50, a spatiotempo-
ral fixed point is achieved, as noted before. Whendxtarget is
large it leads the system to a more spatiotemporally cha
state. The controlled parameter rapidly evolves in time t
suitable range and then fluctuates within a range of values
as to keep the targeted stretch rate, on an average, satis

Note, when targeting chaos by controlling parametera,
the control stiffnessg must not be too small. Ifg is too small
the system moves very slowly through parametera space
and if the initial value ofa is small, the lattice elements ten
to synchronize. Then the spatial error never manages to g
zero and the control is rendered unstable. For temporal fe
back, very small stiffness leads the system to temporal ch
but spatially again the system synchronizes. Thus one
tains synchronized chaos, which in some cases might b
desired target.

In summary, we have presented here several adaptive
gorithms, utilizing both spatial and temporal feedbac
which can be used to achieve desired spatiotemporal be
ior in extended nonlinear systems. The techniques, wh
extend the adaptive control methods for low-dimensio
systems@7,8,6# are rapid, powerful and robust. We have a
plied the scheme to achieve a wide range of spatiotemp
targets, from synchronization and spatial patterns to s
tiotemporal chaos, and found the methodology to be v
successful in extended systems, both in the case of disc
and continuous time evolution.

Two significant features of these methods are as follo
~i! They can be implemented without explicit knowledg

of the dynamics, which can be treated effectively as a bl
box. The only information necessary to implement adapt
control ~or adaptive anticontrol! is either the difference be
tween the current value of a variable and its previous va
or the value of the monitored sites and a suitable set
neighbors.

~ii ! Very few measurements are required to calculate fe
back. Thus the scheme is not computationally intensive
fact just one~arbitrary! site ~and its local neighborhood! is
monitored to obtain the required feedback and this is capa
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of regulating the entire lattice. We have demonstrated
efficacy of our method in an interesting practical context
relevance to smart matter where the above-mentioned
tures of our control method could be of considerable adv
tage. We hope that our techniques will find further applic
tions in other realistic systems like coupled oscilla
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systems, chemical reactions, and Josephson junction arr
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